(4x²-7y²)² ka maan gyat kijiea
(4x²-7y²)² ka maan gyat kijiea
Using the identity (a-b)^2 = a^2 - 2ab + b^2, we can expand (4x^2 - 7y^2)^2 as:
(4x^2 - 7y^2)^2 = (4x^2)^2 - 2(4x^2)(7y^2) + (7y^2)^2
= 16x^4 - 56x^2y^2 + 49y^4
Therefore, (4x^2 - 7y^2)^2 = 16x^4 - 56x^2y^2 + 49y^4.
Answer:
16x⁴ - 56x²y² + 49y⁴
Step-by-step explanation:
Sure! Let's simplify the expression (4x² - 7y²)² step by step.
To simplify it, we'll use a rule called the "power of a binomial" or "squaring a binomial." It states that when we square a binomial expression like (a - b)², we can expand it using the formula:
(a - b)² = a² - 2ab + b²
In our expression, (4x² - 7y²)², we can treat (4x²) as "a" and (-7y²) as "b." Now let's apply the formula:
(4x² - 7y²)² = (4x²)² - 2(4x²)(7y²) + (-7y²)²
To simplify further, let's calculate the squared terms:
(4x²)² = 4² * (x²)² = 16x⁴
(-7y²)² = (-7)² * (y²)² = 49y⁴
Now, let's calculate the cross product:
-2(4x²)(7y²) = -2 * 4 * 7 * x² * y² = -56x²y²
Putting it all together, the simplified expression is:
(4x² - 7y²)² = 16x⁴ - 56x²y² + 49y⁴
So, the simplified form of (4x² - 7y²)² is 16x⁴ - 56x²y² + 49y⁴.
0 Response to "(4x²-7y²)² ka maan gyat kijiea "
Post a Comment